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In this contribution to the special issue of the Journal of Statistical Physics
dedicated to Michael Fisher on his 70th birthday, I shall review two thermo-
dynamically distinct routes for obtaining the interfacial tension of liquid-vapor
interfaces in mixtures. A specific application to the calculation of excess surface
tension of aqueous electrolyte solutions will be presented.

KEY WORDS: Surface tension; electrolyte; interface; adsorption isotherm.

1. INTRODUCTION

It is a pleasure to dedicate this review to Michael Fisher on the occasion
of his 70th birthday. The paper deals with two subjects which are dear
to Michael’s heart, the Thermodynamics and the Coulomb Systems. Here
I will review two thermodynamically distinct routes to surface tension of
aqueous electrolyte solutions. The first, grand canonical route, goes all
the way to the pioneering work of Gibbs on the foundations of thermo-
dynamics and statistical mechanics (1) and is the usual method used by
physical chemists. Application of the Gibbs adsorption isotherm to the
calculation of surface tension of electrolyte solutions started with the works
of Wagner (2) and Onsager and Samaras (3) early in the 20th century. The
second, canonical method, has been introduced recently and was found to
work very well for symmetric 1:1 electrolytes. (4, 5)

2. GRAND-CANONICAL ROUTE

Many elementary thermodynamics and statistical mechanics texts
neglect to deal with all the subtleties leading to the Gibbs adsorption



Fig. 1. Schematic density profiles inside a solution: r1(z) is the characteristic density varia-
tion of water across the liquid-vapor interface, r2(z) is the concentration profile of solute. The
hypothetical dividing surface separating the liquid from the vapor is located at z=zd. The
discontinuous ‘‘bulk’’ profiles for solvent and solute are rd

1 (z) and rd
2 (z), respectively. Note

that differently from non-ionic solutes for which r2(z) extends all the way into the vapor
phase, because of a favorable gain in solvation free energy aqueous electrolytes are completely
confined to the liquid phase.

isotherm. While these do not seriously affect the results for surface tension
of surfactant solutions, the increase of interfacial tension of water due to
salts is proportionately much smaller. Thus, a particular care must be taken
with the thermodynamics in order to account for all the relevant contribu-
tions. We start, therefore, by reviewing the thermodynamics leading to the
Gibbs adsorption isotherm. (1, 6)

Consider an aqueous solution in equilibrium with vapor, Fig. 1. The
bulk density of liquid is r l

1 and the bulk density of vapor is rv
1. The variation

of density is confined to the interfacial region s located between za and zb,
where z is the axis perpendicular to the interface. The thermodynamic
equilibrium requires the constancy of chemical potentials of solute and
solvent and of the pressure throughout the system. The differential internal
energy of the interfacial region s is

dEs=T dSs − P dVs+c dAs+C mi dNs
i , (1)

where T, P, S, V, A, c, mi, Ni are the temperature, pressure, entropy,
volume, area, surface tension, chemical potential, and the number of par-
ticles of type i. The superscript s stands for the interfacial properties. The
sum runs over all the species, solute and solvent. Since the internal energy
E is an extensive function of {S, V, A, Ni}, application of Euler theorem
for first order homogeneous functions allows the integration of Eq. (1)
yielding,

Es=TSs − PVs+cAs+C miN
s
i . (2)
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As usual the Gibbs free energy for the interface is defined through the
Legendre transform

Gs=Es − TSs+PVs − cAs, (3)

which after substitution of internal energy, Eq. (2), reduces to

Gs=C miN
s
i . (4)

The Gibbs free energy is a natural function of {T, P, c, Ns
i } and its differ-

ential is

dGs=−Ss dT+Vs dP − As dc+C mi dNs
i . (5)

On the other hand differentiating Eq. (4), we find

dGs=C mi dNs
i +C Ns

i dmi. (6)

Comparing Eq. (5) with Eq. (6) we are led to a Gibbs–Duhem-like equa-
tion for the interface,

Ss dT − Vs dP+As dc+C Ns
i dmi=0. (7)

Now lets consider in more detail a two component system. In this case
Eq. (7) simplifies to

Ss dT − Vs dP+As dc+Ns
1 dm1+Ns

2 dm2=0. (8)

The chemical potentials are uniform throughout the system and their
variations can be obtained by considering the bulk liquid phase. Remem-
bering that a change in concentration of solute affects the chemical poten-
tials of both solute and solvent, we have

dm1=−s1 dT+v1 dP+1“m1

“cb

2
T, P

dcb (9)

and

dm2=−s2 dT+v2 dP+1“m2

“cb

2
T, P

dcb, (10)
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where the s1 and v1 are the partial entropy and volume per particle of
solvent, s2 and v2 are the partial entropy and volume per particle of solute,
and cb is the concentration of solute, all the values taken inside the bulk
liquid phase. Substituting Eqs. (9) and (10) into Eq. (8), the Gibbs–Duhem
equation for the interface becomes,

(Ss − Ns
1 s1 − Ns

2 s2) dT − (Vs − Ns
1 v1 − Ns

2 v2) dP

+As dc+5Ns
1
1“m1

“cb

2
T, P

+Ns
2
1“m2

“cb

2
T, P

6 dcb=0. (11)

For a truly two component system pressure cannot be held constant if T or
cb is varied. However, presence of an inert gas does not significantly affect
aqueous surface tension, so that in practice P can be kept fixed. (6) With the
help of the Gibbs–Duhem equation for the bulk liquid,

N1
1“m1

“cb

2
T, P

+N2
1“m2

“cb

2
T, P

=0, (12)

where N1 and N2 are the bulk numbers of solvent and solute molecules,
Eq. (11) reduces to two equations,

1 “c

“T
2

cb, P
= −5Ss

As
− Cs

1 s1 − Cs
2 s2

6 , (13)

and,

1 “c

“m2

2
T, P

= −5C2 −
N2

N1
C1
6 , (14)

where C1=Ns
1 /As and C2=Ns

2 /As. Equation (13) states that the variation
of surface tension with respect to temperature is minus the excess entropy,
compared to the entropy content of the same amount of material inside the
liquid phase. Equation (14), called the Gibbs adsorption isotherm, shows
that the change of surface tension with respect to chemical potential of
solute is minus the excess of solute inside s, over the amount which would
be present for the same quantity of solvent in a bulk liquid phase. Note
that the term ‘‘excess’’ is used both when the interfacial region has higher
(positive excess) or lower (negative excess) concentration of solute, as
compared to the bulk liquid phase. Since the thermodynamic stability
requires “m2/“cb > 0 at fixed temperature, Eq. (14) shows that a positive
surface excess of solute leads to a lower interfacial tension, while a negative
surface excess of solute results in a higher surface tension. Finally, we note
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that Eq. (14) is invariant with respect to the specific location of the dividing
surfaces za and zb, as long as they completely enclose the region of strong
density variation.

The surface tension can be obtained by integrating Eqs. (13) and (14).
Of course, this requires a specific microscopic model which would allow us
to calculate the excess entropy and the excess amount of solute inside s.
Such model can, in principle, be provided by statistical mechanics. (3, 7)

In the language of statistical mechanics the calculations based on
Eqs. (13) and (14) are intrinsically grand-canonical. The number of par-
ticles inside s fluctuates and is determined by the condition of equilibrium
between the interfacial region and the bulk phases. Unfortunately to
actually solve a statistical mechanical model, one is invariably forced to
make approximations. It might be, therefore, worthwhile to explore differ-
ent routes to surface tension, each one requiring different approximations.
Of course, in an exact calculation all the thermodynamic routes will lead to
the same result. With approximate theories this, however, is no longer the
case and some routes can be significantly better than others. With this in
sight, we have explored the canonical route to surface tension. (4, 5)

3. CANONICAL ROUTE

Suppose that the system depicted in Fig. 1 which contains

N1=A F
H

0
r1(z) dz (15)

particles of solvent and

N2=A F
H

0
r2(z) dz (16)

particles of solute is confined to a cylindrical box of height H and cross-
sectional area A. We shall define the ‘‘bulk’’ density of solvent and solute
inside the liquid phase as r l

1=r1(0) and r l
2=r2(0), respectively; and the

‘‘bulk’’ density of solvent and solute inside the vapor phase as rv
1=r1(H)

and rv
2=r2(H). The internal energy of the whole system is

E=TS − PV+cA+m1N1+m2N2, (17)

Now we would like to ask which part of this energy is due to the interface?
That is, if instead of a continuous density profiles r1(z) and r2(z), we
would have two discontinuous ‘‘bulk’’ profiles rd

1 (z) and rd
2 (z), depicted
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in Fig. 1, what would be the change in internal energy of the system?
Although easy to pose, this question carries some subtlety. Specifically
where should we put the dividing surface? Also, what is the meaning of
a discontinuous profile? This latter question is fairly easy to answer. To
obtain a discontinuous profile we divide the total volume into two sub-
cylinders of heights zd and H − zd. In the first sub-cylinder of height zd and
volume V l=Azd, there will be N l

1(zd)=r l
1V l molecules of solvent and

N l
2(zd)=r l

2V l molecules of solute. In the second sub-cylinder of height
H − zd and volume Vv=A(H − zd), there will be Nv

1(zd)=rv
1Vv molecules

of solvent and Nv
2(zd)=rv

2Vv molecules of solute. To keep the uniform
density distribution characteristic of the bulk phases, we impose periodic
boundary conditions in the z direction on each sub-cylinder. The internal
energy of the first sub-cylinder, corresponding to the bulk liquid, is then

E l(zd)=TS l(zd) − PV l+m1N l
1(zd)+m2N l

2(zd), (18)

and the internal energy of the second sub-cylinder, corresponding to the
bulk vapor, is

Ev(zd)=TSv(zd) − PVv+m1Nv
1(zd)+m2Nv

2(zd). (19)

Because of the arbitrariness in the location of the dividing surface, in
general, N1 ] N l

1(zd)+Nv
1(zd) and N2 ] N l

2(zd)+Nv
2(zd). Therefore the

surface internal energy, E s(zd)=E − E l(zd) − Ev(zd), is

E s(zd)=TSs(zd)+cA+m1N s
1(zd)+m2N s

2(zd), (20)

where S s(zd)=S − S l(zd) − Sv(zd), N s
1=N1 − N l

1(zd) − Nv
1(zd), and N s

2=
N2 − N l

2(zd) − Nv
2(zd). Since the Helmholtz free energy is given in terms of

the Legendre transform of the internal energy, F s=E s − TS s, Eq. (20) can
be rewritten as,

F s(zd) − m1N s
1(zd) − m2N s

2(zd)=cA. (21)

The statistical mechanics allows us, in principle, to calculate the excess
surface Helmholtz free energy as well as the chemical potentials and the
surface excess of solvent and solute. The thermodynamics relates these to
surface tension through Eq. (21). Note that while the three terms on the left
hand side of Eq. (21) are dependent on the location of the dividing surface,
the right hand side does not. Thus, we can fix the position of zd so that the
surface excess of solvent is zero, Ns

1(zG
d )=0. This specific choice corresponds
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to the, so called, Gibbs dividing surface. With the location of zG
d specified,

the surface tension becomes

c=
F s(zG

d ) − m2N s
2(zG

d )
A

, (22)

Now, lets define the liquid surface excess of solute as

D l=A F
zG

d

0
[r2(z) − r l

2] dz, (23)

and the vapor surface excess of solute as

Dv=A F
H

zG
d

[r2(z) − rv
2] dz. (24)

Noting that N s
2=D l+Dv and

m2=
“F l

bulk

“N l
2

:
T, Vl

=
“Fv

bulk

“Nv
2

:
T, Vv

, (25)

Eq. (22) can be rewritten as

c=
1
A
5F(N1, N2) − F l

bulk(N l
1, N l

2) − Fv
bulk(Nv

1, Nv
2) −

“F l
bulk

“N l
2

D l −
“Fv

bulk

“Nv
2

Dv6 ,

(26)

where F(N1, N2) is the total Helmholtz free of the system with interface.
In the thermodynamic limit D l/N l

2 ° 1 and Dv/Nv
2 ° 1, and Eq. (26)

simplifies to

c=
1
A

[F(N1, N2) − F l
bulk(N l

1, N l
2+D l) − Fv

bulk(Nv
1, Nv

2+Dv)]. (27)

This is the principal thermodynamic result of this paper, which will
serve as the starting point for our analysis of the interfacial tension of elec-
trolyte solutions. The fact that N1=N l

1+Nv
1 and N2=N l

2+Nv
2+D l+Dv

signifies that the calculations based on Eq. (27) must be performed with a
fixed number of solvent and solute molecules. This accounts for the adjective
‘‘canonical’’ in the name of this thermodynamic route to surface tension.

For strong electrolytes, we have an additional simplification. Because
of the high dielectric constant of water, ions inside the liquid have a signi-
ficantly lower electrostatic free energy compared to ions inside the vapor.
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The probability of finding an ion inside bulk liquid pl, compared to its
probability of being inside bulk vapor pv is

pl

pv
=e−bW, (28)

where b=1/kBT and W is the solvation energy, which can be estimated
from the Born equation,

W=
q2

d
1 1

El
−

1
Ev

2 . (29)

In this formula q is the ionic charge, d is the ionic diameter, El is the dielec-
tric constant of liquid, and Ev is the dielectric constant of vapor. For water
El/Ev % 80, so that bW can be well approximated by − lBEl/dEv, where
lB=bq2/El is the Bjerrum length. For water at room temperature and
monovalent ions lB=7.2 Å, while the characteristic diameter of a hydrated
ion is approximately d % 4 Å. Therefore, the concentration of ions in vapor
can be estimated to be rv

2=r l
2 exp(−140), which is immeasurably low.

Furthermore, a rapid decrease of the dielectric constant for z > zG
d should

strongly inhibit presence of ions in the interfacial region, confining them to
z < zG

d , so that Nv
2=0 and Dv=0.

4. A SIMPLE MODEL OF AN ELECTROLYTE

Let us now consider a simple model of an aqueous electrolyte (5)

confined to a cylinder of cross-sectional area A and height H. The N ions
will be idealized as hard spheres of diameters d, carrying charge +q or − q
at their center. Suppose that the Gibbs dividing surface is located at the top
of the cylinder. To simplify the model, we shall further assume that on
crossing the Gibbs dividing surface from bellow the dielectric constant
drops discontinuously from E=80, characteristic of bulk water, to E=1,
characteristic of vacuum. From the previous discussion, the increase in
surface tension of water due to electrolyte is

cex= lim
A, H, N Q .

1
A

(Fex − Fex
bulk), (30)

where the thermodynamic limit is taken in such a way as to preserve the
bulk concentration, cb=N/2AH. In Eq. (30), Fex is the excess Helmholtz
free energy due to electrolyte in the presence of liquid-vapor interface,
while Fex

bulk is the excess free energy of the same amount of electrolyte but

832 Levin



dissolved within the bulk liquid phase of the same volume. The Fex
bulk can be

calculated using the periodic boundary conditions at the top and the
bottom of the cylinder.

As was already mentioned, the decrease in free energy due to solvation
inhibits entrance of ions into the interfacial region, producing an ion-free
layer adjacent to the Gibbs dividing surface. The different hydration char-
acteristics of anions and cations can make their exclusion layers to have
different width. Let us call the width of a cation exclusion layer d+ and the
width of an anion exclusion layer d− . Furthermore, lets for the moment
neglect all the electrostatic and hardcore interactions, beyond their contri-
bution to the formation of ion-free layers. In this case the total free energy
of an electrolyte solution inside the cylinder takes a particularly simple
entropic form,

Fex=kBTN+[ln(c+L3) − 1]+kBTN− [ln(c− L3) − 1], (31)

where N+=N− =N/2, c+=N+/A(H − d+), c− =N− /A(H − d− ), and L

is the thermal de Broglie wavelength. On the other hand the bulk free
energy, Fex

bulk, is given by exactly the same expression, but with c+=c− =
cb — N/2AH, since the periodic boundary condition destroys the ion free
layers. Substituting into Eq. (30) we find a simple result,

cex=kBTcb(d++d− ). (32)

Neglect of direct electrostatic interactions results in excess surface tension
scaling linearly with the concentration of electrolyte. (6, 7) Equation (32) is
quite different from the Onsager–Samaras (OS) limiting law, (3)

cex
LL=c0[ − ln(olB/2) − 2cE+3/2]. (33)

where cE=0.577215665... is the Euler’s constant, c0=q2cb/2E, and o=
`8pq2cb/EkBT is the inverse Debye length. The OS limiting law is believed
to be universally valid for all electrolytes at infinite dilution. In this respect,
it is supposed to be analogous to the Debye limiting laws for bulk electro-
lytes. Comparing Eq. (33) with Eq. (32) we see, however, that only the first
term inside the square brackets is universal, while the existence of ion free
layers leads to corrections which scale linearly with the electrolyte concen-
tration. Although, Onsager and Samaras tried to extend their theory to
finite densities, they have overlooked existence of ion free layers and thus
missed an important contribution to the surface tension.

The experimental measurements show a purely linear dependence of
excess surface tension on concentration, (8) with the validity of OS limiting
law restricted to very low electrolyte densities. Neglect of electrostatic

Thermodynamics of Surface Tension 833



interaction is clearly a strong oversimplification. The advantage of the
canonical formalism, besides its thermodynamic simplicity, is that the elec-
trostatics can be easily taken into account. Thus, the Debye–Hückel
theory (9–11) for bulk electrolytes can be extended to take into account the
liquid-vapor interface. (4, 5) This calculation, which is in excellent agreement
with experiments, shows that for NaCl, existence of an ion free layer of
width d+=d− =2.125 Å, characteristic of ionic hydration radius, accounts
for about 30% of the total contribution to cex, for 0.5 M to 1 M solutions.
Electrostatics becomes even more important at lower concentrations. For
solutions with cb < 0.3 M the electrostatics is over 80% dominant, but the
OS limiting law fails to be a reasonable approximation until cb < 0.1 M.
Furthermore, even an extended grand-canonical calculation (3) which goes
beyond the limiting laws, significantly underestimates the role of electro-
statics. (4, 5) This suggests that the canonical route to surface tension of
aqueous electrolytes is more reliable.

It would be interesting to see if the electrostatic calculations for sym-
metric electrolytes can be extended to the asymmetric systems with distinct
d+ and d− , perhaps along the same lines as used recently by Michael Fisher
and collaborators for the asymmetric bulk electrolytes. (12)
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